

Science Interactives from ESTO/CT and Truth-N-Beauty Software Overview

Earth-Sun System

Universe

- The Computational Technologies (CT) Project and Truth-N-Beauty Software concluded a 2-year partnership to communicate how CT Round-3 investigators use high-performance computing to better understand and predict natural phenomena.
- This partnership produced 12 "science interactives": mini-simulations that allow anyone to change physical parameters and watch the effects.
- · Accompanying stories provide lay-accessible background on the investigation topics.
- Truth-N-Beauty established publishing agreements with some of the world's leading science Web sites: www.astronomy.com, www.discover.com, and www.sciam.com.
- Interactives were demonstrated in NASA exhibits at SC2002 (Baltimore) and SC2003 (Phoenix).
- · CT staff are currently promoting the availability of the interactives to science museums.
- The interactives are available at: http://www.truth-n-beauty.com/transfer/NasaCT/

Science Interactives from ESTO/CT and Truth-N-Beauty Software Earth-Sun System

Albedo

Goal: Learn how a planet's reflectivity changes its temperature.

Investigation: Atmosphere/Ocean Dynamics and Tracers Chemistry, C. Roberto Mechoso, University of

California, Los Angeles

Published: www.astronomy.com

Aurora

Goal: Launch a charged particle from the Sun to create virtual aurorae.

Investigation: Space Weather Modeling Framework, Tamas Gombosi, University of Michigan Published: www.astronomy.com

Coronal Mass Ejection

Goal: Fire coronal mass ejections from the Sun toward the planets. Investigation: Space Weather Modeling Framework, Tamas Gombosi, University of Michigan

Published: www.sciam.com

Earth System Modeling Framework

Goal: See how U.S. weather and climate models are

being combined in new ways.

Investigations: Earth System Modeling Framework,

Part I: Timothy Killeen, National Center for Atmospheric Research; Part II: John Marshall, Massachusetts Institute of Technology; Part III: Arlindo da Silva, NASA/Goddard Space Flight Center

Published: NASA News Release

Science Interactives from ESTO/CT and Truth-N-Beauty Software Earth-Sun System (continued)

Invasive Species

Goal: Introduce a foreign species into a stable ecosystem to see what happens.

Investigation: Biotic Prediction, John Schnase, NASA/Goddard

Space Flight Center

Published: www.discover.com

Predator-Prey

Goal: Explore the way populations of predators and their prey interact.

Investigation: Biotic Prediction, John Schnase, NASA/Goddard

Space Flight Center

Published: www.discover.com

(Expected)

Seismic Waves

Goal: Watch seismic waves traveling through Earth during an earthquake.

Investigation: QuakeSim, Andrea Donnellan, NASA/Jet

Propulsion Laboratory

Published: www.discover.com

Science Interactives from ESTO/CT and Truth-N-Beauty Software Universe

Birth of Binary Stars

Goal: See how stars are formed through collapse and rotation of interstellar gases.

Investigation: Block-Structured Adaptive Mesh Refinement Methods for Multiphase Microgravity Flows and Star Formation, Phillip Colella, Lawrence Berkeley National Laboratory

Published: www.discover.com

Collapse of Clouds

Goal: See how changes in temperature and density affect pressure inside clouds of gas in space.

Investigation: Block-Structured Adaptive Mesh Refinement Methods for Multiphase Microgravity Flows and Star Formation, Phillip Colella, Lawrence Berkeley National Laboratory

Published: www.discover.com

(Expected)

Gamma Ray Bursts 1

Goal: Explore how the properties of Gamma Ray Bursts change depending on their distance from Earth.

Investigation: Interoperability Based Environment for Adaptive Meshes (IBEAM) with Applications to Radiation-Hydrodynamic Models of Gamma Ray Bursts, Paul Saylor, University of Illinois at Urbana-Champaign

Published: www.sciam.com

Science Interactives from ESTO/CT and Truth-N-Beauty Software Universe (continued)

Gamma Ray Bursts 2

Goal: Explore how the energy of Gamma Ray Bursts changes depending on how they explode.

Investigation: Interoperability Based Environment for Adaptive Meshes (IBEAM) with Applications to Radiation-Hydrodynamic Models of Gamma Ray Bursts, Paul Saylor, University of Illinois at Urbana-Champaign

Published: www.sciam.com

National Virtual Observatory

Goal: Learn about how the National Virtual Observatory is allowing astronomers to work together more efficiently than ever before.

Investigation: Montage, Thomas Prince,

California Institute of Technology

Published: www.sciam.com

